Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Poult Sci ; 102(11): 102967, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639754

RESUMO

Avian pathogenic Escherichia coli (APEC) causes colibacillosis, the main bacterial disease in poultry leading to significant economic losses worldwide. Antibiotic treatments favor the emergence of multidrug-resistant bacteria, and preventive measures are insufficient to control the disease. There is increasing interest in using the potential of bacteriophages, not only for phage therapy but also for prevention and biocontrol. This study aimed to evaluate the efficacy of a phage cocktail administered in ovo to prevent avian colibacillosis in chicks. When 4 different phages (REC, ESCO3, ESCO47, and ESCO58), stable under avian physiological conditions, were combined and inoculated at 17 embryogenic days (ED), they were transmitted to the newly hatched chicks. In a second trial, the 4-phage cocktail was inoculated into the allantoic fluid at ED16 and after hatch 1-day-old chicks were challenged with the O2 APEC strain BEN4358 inoculated subcutaneously. Two phages (REC and ESCO3) were still detected in the ceca of surviving chicks at the end of the experiment (7-days postinfection). Chicks that received the phages in ovo did not develop colibacillosis lesions and showed a significant decrease in intestinal BEN4358 load (8.00 × 107 CFU/g) compared to the challenged chicks (4.52 × 108 CFU/g). The majority of the reisolated bacteria from the ceca of surviving chicks had developed full resistance to ESCO3 phage, and only 3 were resistant to REC phage. The partially or complete resistance of REC phage induced a considerable cost to bacterial virulence. Here, we showed that phages inoculated in ovo can partially prevent colibacillosis in 1-wk-old chicks. The reduction in the APEC load in the gut and the decreased virulence of some resistant isolates could also contribute to control the disease.

2.
Microbiol Spectr ; 11(3): e0429622, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140373

RESUMO

The increase in antibiotic-resistant avian-pathogenic Escherichia coli (APEC), the causative agent of colibacillosis in poultry, warrants urgent research and the development of alternative therapies. This study describes the isolation and characterization of 19 genetically diverse, lytic coliphages, 8 of which were tested in combination for their efficacy in controlling in ovo APEC infections. Genome homology analysis revealed that the phages belong to nine different genera, one of them being a novel genus (Nouzillyvirus). One phage, REC, was derived from a recombination event between two Phapecoctavirus phages (ESCO5 and ESCO37) isolated in this study. Twenty-six of the 30 APEC strains tested were lysed by at least one phage. Phages exhibited varying infectious capacities, with narrow to broad host ranges. The broad host range of some phages could be partially explained by the presence of receptor-binding protein carrying a polysaccharidase domain. To demonstrate their therapeutic potential, a phage cocktail consisting of eight phages belonging to eight different genera was tested against BEN4358, an APEC O2 strain. In vitro, this phage cocktail fully inhibited the growth of BEN4358. In a chicken lethality embryo assay, the phage cocktail enabled 90% of phage-treated embryos to survive infection with BEN4358, compared with 0% of nontreated embryos, indicating that these novel phages are good candidates to successfully treat colibacillosis in poultry. IMPORTANCE Colibacillosis, the most common bacterial disease affecting poultry, is mainly treated by antibiotics. Due to the increased prevalence of multidrug-resistant avian-pathogenic Escherichia coli, there is an urgent need to assess the efficacy of alternatives to antibiotherapy, such as phage therapy. Here, we have isolated and characterized 19 coliphages that belong to nine phage genera. We showed that a combination of 8 of these phages was efficacious in vitro to control the growth of a clinical isolate of E. coli. Used in ovo, this phage combination allowed embryos to survive APEC infection. Thus, this phage combination represents a promising treatment for avian colibacillosis.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Escherichia coli/genética , Bacteriófagos/genética , Infecções por Escherichia coli/terapia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Colífagos/genética , Galinhas , Aves Domésticas , Doenças das Aves Domésticas/terapia , Doenças das Aves Domésticas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA